Interpolation by polynomial functions of distributive lattices : a generalization of a theorem of R. L. Goodstein
نویسندگان
چکیده
We consider the problem of interpolating functions partially defined over a distributive lattice, by means of lattice polynomial functions. Goodstein’s theorem solves a particular instance of this interpolation problem on a distributive lattice L with least and greatest elements 0 and 1, resp.: Given a function f : {0, 1}n → L, there exists a lattice polynomial function p : Ln → L such that p|{0,1}n = f if and only if f is monotone; in this case, the interpolating polynomial p is unique. We extend Goodstein’s theorem to a wider class of partial functions f : D → L over a distributive lattice L, not necessarily bounded, and where D ⊆ Ln is allowed to range over n-dimensional rectangular boxes D = {a1, b1} × · · · × {an, bn} with ai, bi ∈ L and ai < bi, and determine the class of such partial functions which can be interpolated by lattice polynomial functions. In this wider setting, interpolating polynomials are not necessarily unique; we provide explicit descriptions of all possible lattice polynomial functions which interpolate these partial functions, when such an interpolation is available.
منابع مشابه
General Interpolation by Polynomial Functions of Distributive Lattices
For a distributive lattice L, we consider the problem of interpolating functions f : D → L defined on a finite set D ⊆ L, by means of lattice polynomial functions of L. Two instances of this problem have already been solved. In the case when L is a distributive lattice with least and greatest elements 0 and 1, Goodstein proved that a function f : {0, 1} → L can be interpolated by a lattice poly...
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE DUNKL TRANSFORM IN THE SPACE $L^P(R)$
In this paper, using a generalized Dunkl translation operator, we obtain a generalization of Titchmarsh's Theorem for the Dunkl transform for functions satisfying the$(psi,p)$-Lipschitz Dunkl condition in the space $mathrm{L}_{p,alpha}=mathrm{L}^{p}(mathbb{R},|x|^{2alpha+1}dx)$, where $alpha>-frac{1}{2}$.
متن کاملFUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES
The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...
متن کاملOn generalized topological molecular lattices
In this paper, we introduce the concept of the generalized topological molecular lattices as a generalization of Wang's topological molecular lattices, topological spaces, fuzzy topological spaces, L-fuzzy topological spaces and soft topological spaces. Topological molecular lattices were defined by closed elements, but in this new structure we present the concept of the open elements and defi...
متن کامل